8. FROBENIUS GROUPS

§8.1. Permutation Representations

A **permutation representation** is one where the corresponding matrices are permutation matrices.

Theorem 1: If θ is the character of a permutation representation then $g\theta = \#symbols$ fixed by g.

Proof: $g\theta$ is the trace of the corresponding matrix. This matrix has entries 0 and 1 only, and there is a 1 on the diagonal in those positions that correspond to a symbol fixed by g. $\mathfrak{P} \mathfrak{S}$

A permutation group G is **transitive** permutation group on X if for all $x, y \in X$ there exists $\alpha \in G$ such that $x\alpha = y$. Let $G_{rs} = \{g \mid rg = s\}$ and let $G_{r} = G_{rr}$. Then $G_{r} \leq G$ for all r.

Theorem 2: If $G \le S_n$ is transitive then:

$$|G:G_r| = n$$
 for all r .

Proof: If $g \in G_{rs}$ then $G_rg = G_{rs}$ so G_{r1} , ..., G_{rn} are the left cosets of G_r in G.

Theorem 3: If G is a transitive permutation group on n symbols, and θ is the permutation representation, then:

$$\underset{g \in G}{\sum} g\theta = |G|.$$

§8.2. Multiply Transitive Permutation Groups

A permutation group G, on a set X, is **T-transitive** if for all *t*-tuples $(x_1, ..., x_t)$ and $(y_1, ..., y_t) \in X^T$, with the x_i 's distinct and the y_i 's distinct, there exists $\alpha \in G$ such that for each $i, x_i\alpha = y_i$.

Examples 1: S_n is *n*-transitive, A_n is (n-2)-transitive. $S_3 \times S_3$ is not transitive.

NOTE: Apart from S_n and A_n there are only four 4-transitive groups, called the Mathieu groups.

Theorem 4: If G is a 2-transitive permutation group and θ is the corresponding character then:

$$\sum_{g \in G} (g\theta)^2 = 2|G|.$$

Proof: G is transitive on $D = \{(x, y) \mid x \neq y\}$, where (x, y)g is defined to be (xg, yg).

Now the number of elements of D fixed by g is:

$$(g\theta))((g\theta)-1).$$

So
$$\sum_{g \in G} [(g\theta)^2 - (g\theta)] = |G|$$
 and so:

$$\sum_{g \in G} (g\theta)^2 = \sum_{g \in G} (g\theta) \ + |G| = 2|G|.$$

Theorem 5:

Let G be a permutation group with character θ .

If G is transitive, χ_1 occurs in θ with multiplicity 1.

If G is doubly transitive, $\theta = \chi_1 + \chi_j$ for some non-trivial irreducible character χ_j .

Proof: If G is transitive, $\langle \chi_1 | \theta \rangle = \Sigma(g\theta)/|G| = 1$.

If G is doubly transitive, $\langle \theta \mid \theta \rangle = \sum (g\theta)^2/|G| = 2$.

§8.3. Frobenius Permutation Groups

Theorem 6: Suppose G is a transitive permutation group on n symbols, and only the identity fixes more than one symbol. Let $H = G_1$ and let χ_1 be the trivial character of G, θ the permutation character of G and let ψ be any irreducible character of H, of degree m. Then:

$$\psi^* = \psi^{G} - m(\theta - \chi_1)$$

is an irreducible character of G.

Proof: Let $X = \{g \mid g \text{ fixes exactly one symbol}\}$ and $Y = \{g \mid g \text{ fixes no symbols}\}.$

Then $G = \{1\} + X + Y$ and each of X, Y is the disjoint union of conjugacy classes.

Since $\langle \theta \mid \chi_1 \rangle > 0$, $\alpha = \theta - \chi_1$ is a character:

	1		\mathbf{X}			Y	
θ	n	1		1	0		0
χ1	1	1		1	1		1
α	<i>n</i> – 1	0		0	-1	• • •	-1

The elements of X consist of the non-trivial elements of the G_r , for r = 1, 2, ..., n.

Hence
$$|X| = n(h - 1)$$
 where $h = |H| = |G|/n$ and so $|Y| = n - 1$.

Since the G_r are conjugate in G each conjugacy class within X contains an element of H.

Let $1 \neq x \in H$ and let $y \in C_G(x)$.

Then 1yx = 1xy = 1y.

Since x fixes both 1 and 1y it must be that 1y = y and so:

$$y \in H$$
.

Hence $C_G(x) = C_H(x)$ and so $|x^G| = n.|x^H|$.

If $g^{-1}xg = y \in H$, 1gy = 1xg = 1g.

Clearly $y \ne 1$ and, since it fixes both 1 and 1g,

1g = 1 and so $g \in H$.

It follows that $x^G \cap H = x^H$.

Hence the proportion of each conjugacy class within X that lies in H is 1/n.

Let the conjugacy classes of H be Γ_1 , ..., Γ_k with sizes h_1 , ..., h_k .

For each r = 1, 2, ..., n choose $z_r \in G_{1r}$.

Then the conjugacy classes of G that lie within X are of the form:

$$\Omega_j = \sum_{r=1}^n z_r^{-1} \Gamma_j z_r \text{ for } j = 2, \ldots, n,$$

where Σ here denotes a disjoint union.

Moreover $\Omega_j \cap H = \Gamma_j$. So within X there are k-1 conjugacy classes of sizes nh_2, \ldots, nh_k .

G	1		Y			
α	<i>n</i> – 1	0	 0	-1		-1
ψ^{G}	mn	$\psi(\Gamma_2)$	 $\psi(\Gamma_k)$	0		0
ψ*	m	$\psi(\Gamma_2)$	 $\psi(\Gamma_k)$	m		m
Ψ	m	$\psi(\Gamma_2)$	 $\psi(\Gamma_k)$	0		0

At this stage ψ^* is just a linear combination of irreducible characters, with integer coefficients. It may not be a character, let alone an irreducible one.

$$\langle \psi^*, \psi^* \rangle = \frac{m^2 + \sum_{j=2}^n nh_j |\psi(\Gamma_j)|^2 + (n-1)m^2}{nh}$$

$$m^{2}n - m^{2}n + n\sum_{j=1}^{n}h_{j}|\psi(\Gamma_{j})|^{2}$$

$$= \frac{j=1}{nh} = \frac{nh}{nh} = 1.$$

Thus $\psi^G - m\alpha$ is an irreducible character or minus an irreducible character.

But $(\psi^G - m\alpha)(1) = mn - m(n-1) = m > 0$ so $\psi^G - m\alpha$ is an irreducible character. \heartsuit

Corollary: The set of permutations in G which fix no symbols, together with the identity, is a normal subgroup of G.

Proof: For all $x \in X \cap H$ there exists an irreducible character ψ of H such that $\psi(x) \neq \deg \psi$.

Hence x lies outside of the kernel of the representation corresponding to $\psi^G - (\text{deg}\psi)\alpha$.

The intersection of these kernels must therefore be:

$$\{1\} + Y$$
.

Example 2:
$$G = A_4$$
, $H \cong C_3$. $X = (\times \times \times)$, $Y = (\times \times)(\times \times)$, $h = 3$.

	I	7	K	\mathbf{Y}		
	Ι	(xxx)	(xxx)	(xx)(xx)		
size	1	4	4	3		
α	3	0	0	-1		
${\psi_1}^G$	4	1	1	0		
$\psi_1^G - m\alpha$	1	1	1	1		
ψ_2^G	4	ω	ω^2	0		

$\psi_2^G - m\alpha$	1	ω	ω^2	1
ψ_3^G	1	ω^2	ω	1
$\psi_3^G - m\alpha$	1	ω^2	ω	1

§8.4. Abstract Frobenius Groups

A group G is a **Frobenius** group if there exists a proper non-trivial subgroup H of G such that $N_G(H) = H$ and $C_G(h) \le H$ for all non-trivial $h \in H$.

Example 3: S_3 is a Frobenius group with H being any of the three subgroups of order 2.

Theorem 7: G is Frobenius if and only if there exists a proper non-trivial subgroup H of G such that $H \cap H^g = 1$ for all $g \in G - H$.

Proof: Suppose $H \cap H^g = 1$ for all $g \notin H$ and let $g \in C_G(h)$ for $1 \neq h \in H$.

Then $h \in H \cap H^g$ and so $g \in H$.

Suppose now G is Frobenius and let |G:H| = N.

Suppose $1 \neq h \in H \cap H^g$ for some $g \notin H$.

Let $1 = x_1$, $g = x_2$, x_3 , ..., x_N be a set of left coset representatives of H in G. Then H, H^g , H^{x_3} , ..., H^{x_N} are the conjugates of H in G and, since $N_G(H) = H$, they are distinct.

Clearly $h^G = h^{Hx_1} \cup h^{Hx_1} \dots \cup h^{Hx_1}$.

Now $|hH^{xi}| = |h^H|$ for each i.

Since $h \in h^{Hx_1} \cap h^{Hx_2}$, $|h^G| < N.|h^H|$.

But $C_G(h) = C_H(h)$ so $|h^G| = N.|h^H|$, a contradiction. $\heartsuit \odot$

Theorem 8: Suppose G is a Frobenius group. Then G is a transitive group of permutations on the left cosets of H and only the identity fixes more than one coset.

Proof: (Ha)g = Hag so G permutes the right cosets. Moreover it acts transitively.

If (Ha)g = Ha and (Hb)g = Hb for $g \ne 1$ then $g \in H^a \cap H^b$ = $(H \cap H^ba^{-1})^a$ so Ha = Hb. 9

Theorem 9: A Frobenius group has a normal subgroup K and a subgroup H such that G = KH and $H \cap K = 1$. (G is called a split extension of K by H) $\mathfrak{P} \mathfrak{S}$

The subgroup K is called the **kernel** of the Frobenius group.

Theorem 10: If A is any abelian group of odd order and G is A extended by a cyclic subgroup $H = \langle g \rangle$ of order 2 where g induces the automorphism $a \rightarrow a^{-1}$ on A, then G is a Frobenius group with kernel A.

Proof: Clearly A is a normal subgroup of G.

A typical element of G has the form a or ag where $a \in A$. If a commutes with g then $ag = ga = a^{-1}g$ in which case $a^2 = 1$.

Since A has odd order we must have a = 1.

If ag commutes with g then $(ag)g = g(ag) = a^{-1}g^2$ in which case $a^2 = 1$ and so again a = 1.

Hence $H \cap H^a = 1$ and $H \cap H^{ag} = 1$ for all $a \in A$.

Example 4: The dihedral group

$$D_{2n} = \langle A, B \mid A^n, B^2, BA = A^{-1}B \rangle$$

is a Frobenius group, with kernel $K = \langle A \rangle$. Any of the subgroups of order 2, for example $\langle B \rangle$, can play the role of H in the definition.

Theorem 11: If G is Frobenius with kernel K and complement H and $1 \neq k \in K$ then

$$C_G(k) = C_K(k)$$
.

Proof: Let $g \in C_G(k)$. If Hag = Ha then aga⁻¹ $\in H$.

But $aka^{-1} \in C_G(aga^{-1})$ whence g = 1.

If g fixes no coset then, by the Frobenius theorem, $g \in K$. \r

Theorem 12: Suppose G is Frobenius with kernel K and complement H.

Then the class equations for H and K have the forms:

$$|\mathbf{H}| = \mathbf{N} = 1 + h_2 + \dots + h_s$$
 and

$$|\mathbf{K}| = \mathbf{M} = 1 + k_2 * \mathbf{N} + \dots + k_t * \mathbf{N}$$

and the class equation for G is:

$$|G| = 1 + k_2N + ... + k_tN + Mh_2 + ... + Mh_s.$$

Proof: Let $1 \neq x \in K$ and $1 \neq y \in H$.

Then $|x^{G}| = M|x^{K}|$ and $|y^{G}| = N.|y^{H}|$.

 $|x^{G}|$ is a union of N conjugacy classes in K.

Every element $g \in G - K$ is conjugate to exactly one $h \in H$ so $|g^G| = M.|h^G|$. $^{\text{th}} \odot$

[Note that in the class equation given for G the terms are in non-descending order.]

Theorem 13 (THOMPSON): The kernel of a Frobenius group is nilpotent.

Proof: We omit the proof of this very deep theorem. \heartsuit

So far in all our examples of Frobenius groups the kernel has been abelian. However it can be non-abelian.

Example 5: Let K be the group of all 3×3 uni-uppertriangular matrices over \mathbb{Z}_7 . That is, the elements of K

have the form $\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$. This is a non-abelian group of

order $343 = 7^3$.

Extend K by $H = \langle g \rangle$ of order 3 such that:

$$g^{-1} \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} g = \begin{pmatrix} 1 & 2a & 4b \\ 0 & 1 & 2c \\ 0 & 0 & 1 \end{pmatrix}.$$

The resulting group G is a Frobenius group of order 1029 $= 3.7^3$ with Frobenius kernel K of order 343. Although K is not abelian, it is nilpotent, in accordance with Thompson's Theorem.

Theorem 14: Suppose the Frobenius group G has the class equation:

 $|G| = 1 + a_2 + \dots + a_n$ where $a_2 \le a_3 \le \dots \le a_n$. Let $N = a_2$, M = |G|/N and let a_r be the last term divisible by N.

Then:

(1)
$$M = 1 + a_2 + ... + a_r$$
;

(2) N =
$$\frac{a_{r+1} + \dots a_{r+s}}{M} + 1$$
;

- (3) N | M 1;
- (4) N | a_i if $i \le r$;
- (5) M | a_i if i > r;
- (6) if N is even, $a_i = N$ for $i \le r$.

Proof: Since N doesn't divide any Mh_i , r = t and

$$a_i = \begin{cases} k_i \text{N if } i \leq r \\ \text{M}h_{i-t+1} \text{ if } i > r \end{cases}.$$

Parts (1) - (5) now follow.

(6) Let $h \in H$ have order 2. If $k \in K$ then:

$$k^{-1}kk^hk = k^hk = h^{-1}kk^hh$$
 so

 $kh^{-1} \in C_G(kk^h) \le K \text{ or } kk^h = 1.$

The first is a contradiction so $k^h = k^{-1}$ for all $k \in K$.

If $a, b \in K$, $(ab)^h = a^h b^h$ whence $(ab)^{-1} = a^{-1} b^{-1}$ and so ab = ba. Hence K is abelian.

Theorem 15 (FROBENIUS TEST): Let p be prime. Suppose |G| = pN and G has p - 1 conjugacy classes of size N. Then G is a Frobenius group with kernel G' of order N.

Proof: Let h belong to a conjugacy classes of size N and let $H = C_G(h)$.

By the proof of the pN Test, each conjugacy class of size N contains exactly one non-trivial element of H.

Suppose $1 \neq h \in H \cap x^{-1}Hx$. Then $H \leq C_G(h)$ and since they both have order r, $H = C_G(h)$. If $x \notin H$ then $h \neq xhx^{-1} \in H$.

So the conjugacy class containing h contains two elements of H, contradicting the pN Test.

Hence if $x \in G - H$, $H \cap x^{-1}Hx = 1$.

Thus G is a Frobenius group.

If the Frobenius kernel is K then |K| = N.

Now $G/K \cong H$ and so is abelian. Thus $G' \leq K$. But, if x, y belong to the same conjugacy class of size N, then $x^{-1}y \in G'$ and so $|G'| \geq N$. Hence the Frobenius kernel is G'. $\mathfrak{P} \mathfrak{Q}$

coopersnotes.net

GENERAL

• The Mathematics At The Edge Of The Rational Universe

- Basic Mathematics
- Concepts of Algebra
- Concepts of Calculus
- Elementary Algebra
- Elementary Calculus

1st YEAR UNI

- Techniques of Algebra
- Techniques of Calculus
- Matrices

2nd YEAR UNI

- Linear Algebra
- Languages & Machines
- Discrete Mathematics

3rd YEAR UNI

- Group Theory volume
- 1
- Group Theory volume 2
- Galois Theory
- Graph Theory
- Number Theory
- Geometry
- Topology
- Set Theory

POSTGRADUATE

- Ring Theory
- Representation Theory
- Quadratic Forms
- Group Tables vol 1
- Group Tables vol 2