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8. FROBENIUS GROUPS  
 

§8.1. Permutation Representations 
 A permutation representation is one where the 

corresponding matrices are permutation matrices. 

 

Theorem 1: If  is the character of a permutation 

representation then g = #symbols fixed by g. 

Proof: g is the trace of the corresponding matrix. This 

matrix has entries 0 and 1 only, and there is a 1 on the 

diagonal in those positions that correspond to a symbol 

fixed by g. ☺ 

 

 A permutation group G is transitive permutation 

group on X if for all x, y  X there exists   G such that 

x = y. Let Grs = {g | rg = s} and let Gr = Grr. 

Then Gr  G for all r. 

 

Theorem 2: If G  Sn is transitive then: 

|G:Gr| = n for all r. 

Proof: If g  Grs then Grg = Grs so Gr1, …, Grn are the 

left cosets of Gr in G. ☺ 

 

Theorem 3: If G is a transitive permutation group on n 

symbols, and  is the permutation representation, then: 


gG

g = |G|. 
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Proof: 
gG

g = |{(x, g) | xg = x}| 

                      = 
r=1

n

|Gr|  

                      = n.
|G|

n
 = |G|. ☺ 

 

§8.2. Multiply Transitive Permutation 

Groups 
 A permutation group G, on a set X, is T-transitive 

if for all t-tuples (x1, … , xt) and (y1, …, yt)  XT, with 

the xi’s distinct and the yi’s distinct, there exists   G 

such that for each  i, xi = yi. 

 

Examples 1: Sn is n-transitive, An is (n − 2)-transitive. 

S3  S3 is not transitive. 

NOTE: Apart from Sn and An there are only four 4-

transitive groups, called the Mathieu groups. 

 

Theorem 4: If G is a 2-transitive permutation group and 

 is the corresponding character then: 


gG

(g)2  = 2|G|. 

Proof: G is transitive on D = {(x, y) | x  y}, 

where (x, y)g is defined to be (xg, yg). 
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Now the number of elements of D fixed by g is: 

(g))((g) − 1). 

So 
gG

[(g)2 − (g)] = |G| and so: 


gG

(g)2 = 
gG

(g)  + |G| = 2|G|. 

 

Theorem 5: 

Let G be a permutation group with character . 

If G is transitive, 1 occurs in  with multiplicity 1. 

If G is doubly transitive,  = 1 + j for some non-trivial 

irreducible character  j. 

Proof: If G is transitive, 1 |  = (g)/|G| = 1. 

If G is doubly transitive,  |  = (g)2/|G| = 2. 

 

§8.3. Frobenius Permutation Groups 
Theorem 6: Suppose G is a transitive permutation group 

on n symbols, and only the identity fixes more than one 

symbol. Let H = G1 and let 1 be the trivial character of 

G,  the permutation character of G and let  be any 

irreducible character of H, of degree m. Then: 

* = G − m( − 1) 

is an irreducible character of G. 

Proof: Let X = {g | g fixes exactly one symbol} and 

Y = {g | g fixes no symbols}. 

Then G = {1} + X + Y and each of X, Y is the disjoint 

union of conjugacy classes.  
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 1 X Y 

 n 1 … 1 0 … 0 

1 1 1 … 1 1 … 1 

 

Since  | 1 > 0,  =  − 1 is a character: 

 

 1 X Y 

 n 1 … 1 0 … 0 

1 1 1 … 1 1 … 1 

 n − 1 0 … 0 −1 … −1 

 

The elements of X consist of the non-trivial elements of 

the Gr, for r = 1, 2, …, n. 

Hence |X| = n(h − 1) where h = |H| = |G|/n and so 

|Y| = n − 1. 

Since the Gr are conjugate in G each conjugacy class 

within X contains an element of H. 

 

Let 1  x  H and let y  CG(x). 

Then 1yx = 1xy = 1y. 

Since x fixes both 1 and 1y it must be that 1y = y and so: 

y  H. 

Hence CG(x) = CH(x) and so |xG| = n.|xH|. 

If g−1xg = y  H, 1gy = 1xg = 1g. 

Clearly y  1 and, since it fixes both 1 and 1g, 

1g = 1 and so g  H. 

It follows that xG  H = xH. 
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Hence the proportion of each conjugacy class within X 

that lies in H is 1/n. 

 

Let the conjugacy classes of H be 1, …, k with sizes 

h1, …, hk. 

For each r = 1, 2, … , n choose zr  G1r. 

Then the conjugacy classes of G that lie within X are of 

the form: 

j = 
r=1

n

zr
−1jzr for j = 2, … , n, 

 where  here denotes a disjoint union. 

Moreover j  H = j. So within X there are k − 1 

conjugacy classes of sizes nh2, … , nhk. 

 

G 1 X Y 

 n − 1 0 … 0 −1 … −1 

G mn (2) … (k) 0 … 0 

* m (2) … (k) m … m 

 m (2) … (k) 0 … 0 

 
At this stage * is just a linear combination of irreducible 

characters, with integer coefficients. It may not be a 

character, let alone an irreducible one. 

*, *   =  

m2 + 
j=2

n

nhj|(j)|
2 + (n − 1)m2

nh
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                    =  

m2n − m2n + n 
j=1

n

hj|(j)|
2

nh
  = 

nh

nh
  = 1. 

 

Thus G − m is an irreducible character or minus an 

irreducible character. 

But (G − m)(1) = mn − m(n − 1) = m > 0 so G − m is 

an irreducible character. ☺ 

Corollary: The set of permutations in G which fix no 

symbols, together with the identity, is a normal subgroup 

of G. 

Proof: For all x  X  H there exists an irreducible 

character  of H such that (x)  deg. 

Hence x lies outside of the kernel of the representation 

corresponding to G − (deg). 

The intersection of these kernels must therefore be: 

{1} + Y. 

 

Example 2: G = A4, H  C3. X = (), Y = ()(), 

h = 3. 

 I X Y 

 I () () ()() 

size 1 4 4 3 

 3 0 0 −1 

1
G 4 1 1 0 

1
G − m 1 1 1 1 

2
G 4  2 0 
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2
G − m 1  2 1 

3
G 1 2  1 

3
G − m 1 2  1 

 

§8.4. Abstract Frobenius Groups 
 A group G is a Frobenius group if there exists a 

proper non-trivial subgroup H of G such that NG(H) = H 

and CG(h)  H for all non-trivial h  H. 

 

Example 3: S3 is a Frobenius group with H being any of 

the three subgroups of order 2. 

 

Theorem 7: G is Frobenius if and only if there exists a 

proper non-trivial subgroup H of G such that H  Hg = 1 

for all g  G − H. 

Proof: Suppose H  Hg = 1 for all g  H and let g  CG(h) 

for 1  h  H. 

Then h  H  Hg and so g  H. 

 

Suppose now G is Frobenius and let |G:H| = N. 

Suppose 1  h  H  Hg for some g  H. 

Let 1 = x1, g = x2, x3, … , xN be a set of left coset 

representatives of H in G. Then H, Hg, Hx3, …, HxN are 

the conjugates of H in G and, since NG(H) = H, they are 

distinct. 

Clearly hG = hHx1   hHx1  ...  hHx1. 

Now |hHxi| = |hH| for each i. 

Since h  hHx1  hHx2, |hG| < N.|hH|. 
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But CG(h) = CH(h) so |hG| = N.|hH|, a contradiction. ☺ 

 

Theorem 8: Suppose G is a Frobenius group. Then G is 

a transitive group of permutations on the left cosets of H 

and only the identity fixes more than one coset. 

Proof: (Ha)g = Hag so G permutes the right cosets. 

Moreover it acts transitively. 

If (Ha)g = Ha and (Hb)g = Hb for g  1 then g  Ha  Hb 

= (H  Hba−1
)a so Ha = Hb. ☺ 

Theorem 9: A Frobenius group has a normal subgroup K 

and a subgroup H such that G = KH and H  K = 1. (G is 

called a split extension of K by H) ☺ 

 

 The subgroup K is called the kernel of the 

Frobenius group. 

 

Theorem 10: If A is any abelian group of odd order and 

G is A extended by a cyclic subgroup H = g of order 2 

where g induces the automorphism a → a−1 on A, then G 

is a Frobenius group with kernel A. 

Proof: Clearly A is a normal subgroup of G. 

A typical element of G has the form a or ag where a  A. 

If a commutes with g then ag = ga = a−1g in which case 

a2 = 1. 

Since A has odd order we must have a = 1. 

If ag commutes with g then (ag)g = g(ag) = a−1g2 in which 

case a2 = 1 and so again a = 1. 

Hence H  Ha = 1 and H  Hag = 1 for all a  A. ☺ 
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Example 4: The dihedral group 

D2n = A, B | An, B2, BA = A−1B 

is a Frobenius group, with kernel K = A. Any of the 

subgroups of order 2, for example B, can play the role 

of H in the definition. 

 

Theorem 11: If G is Frobenius with kernel K and 

complement H and 1  k  K then 

CG(k) = CK(k). 

Proof: Let g  CG(k). If Hag = Ha then aga−1  H. 

But aka−1  CG(aga−1) whence g = 1. 

If g fixes no coset then, by the Frobenius theorem, g  K. 
☺ 

 

Theorem 12: Suppose G is Frobenius with kernel K and 

complement H. 

Then the class equations for H and K have the forms: 

|H| = N = 1 + h2 + … + hs and 

|K| = M = 1 + k2 * N + … + kt * N 

and the class equation for G is: 

 |G| = 1 + k2N + … + ktN + Mh2 + … + Mhs. 

Proof: Let 1  x  K and 1  y  H. 

Then |xG| = M|xK| and |yG| = N.|yH|. 

|xG| is a union of N conjugacy classes in K. 

Every element g  G − K is conjugate to exactly one h  

H so |gG| = M.|hG|. ☺ 

 

[Note that in the class equation given for G the terms are 

in non-descending order.] 
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Theorem 13 (THOMPSON): The kernel of a Frobenius 

group is nilpotent. 

Proof: We omit the proof of this very deep theorem.  

 

 So far in all our examples of Frobenius groups the 

kernel has been abelian. However it can be non-abelian. 

 

Example 5: Let K be the group of all 3  3 uni-upper-

triangular matrices over ℤ7. That is, the elements of K 

have the form 






1 a b

0 1 c

0 0 1
 . This is a non-abelian group of 

order 343 = 73. 

Extend K by H = g of order 3 such that: 

g−1







1 a b

0 1 c

0 0 1
 g = 







1 2a 4b

0  1  2c

0  0  1
 . 

The resulting group G is a Frobenius group of order 1029 

= 3.73 with Frobenius kernel K of order 343. Although K 

is not abelian, it is nilpotent, in accordance with 

Thompson’s Theorem. 

 

Theorem 14: Suppose the Frobenius group G has the 

class equation: 

|G| = 1 + a2 + …  + an where a2  a3  …  an. 

Let N = a2, M = |G|/N and let ar be the last term divisible 

by N. 
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Then : 

(1) M = 1 + a2 + … + ar; 

(2) N = 
ar+1 + … ar+s

M
  + 1; 

(3) N | M − 1; 

(4) N | ai if i  r; 

(5) M | ai if i > r; 

(6) if N is even,  ai = N for i  r. 

Proof: Since N doesn’t divide any Mhi, r = t and 

ai = 


 kiN if i  r

Mhi−t+1 if i > r
 . 

Parts (1) – (5) now follow. 

(6) Let h  H have order 2. If k  K then: 

k−1kkhk = khk = h−1kkhh so 

kh−1  CG(kkh)  K or kkh = 1. 

The first is a contradiction so kh = k−1 for all k  K. 

If a, b  K, (ab)h = ahbh whence (ab)−1 = a−1b−1 and so ab 

= ba.  Hence K is abelian. ☺ 

 

Theorem 15 (FROBENIUS TEST): Let p be prime. 

Suppose |G| = pN and G has p − 1 conjugacy classes of 

size N. Then G is a Frobenius group with kernel G of 

order N. 

Proof: Let h belong to a conjugacy classes of size N and 

let H = CG(h). 

By the proof of the pN Test, each conjugacy class of size 

N contains exactly one non-trivial element of H. 
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Suppose 1  h  H  x−1Hx. 

Then H  CG(h) and since they both have order r, 

H = CG(h). 

If x  H then h  xhx−1  H. 

 

So the conjugacy class containing h contains two 

elements of H, contradicting the pN Test. 

Hence if x  G − H, H  x−1Hx = 1. 

Thus G is a Frobenius group. 

If the Frobenius kernel is K then |K| = N. 

 

Now G/K  H and so is abelian. Thus G  K. 

But, if x, y belong to the same conjugacy class of size N, 

then x−1y  G and so |G|  N. Hence the Frobenius kernel 

is G. ☺ 
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