8. FROBENIUS GROUPS

88.1. Permutation Representations
A permutation representation is one where the
corresponding matrices are permutation matrices.

Theorem 1: If 6 is the character of a permutation
representation then g6 = #symbols fixed by g.

Proof: g0 is the trace of the corresponding matrix. This
matrix has entries 0 and 1 only, and there is a 1 on the
diagonal in those positions that correspond to a symbol
fixed by g. ¥©

A permutation group G is transitive permutation
group on X if for all X, y € X there exists o € G such that
xo =Y. Let Grs = {g | rg = s} and let Gr = Gyr.

Then G, <G forallr.

Theorem 2: If G < Sj is transitive then:

|G:Gy| =nforallr.
Proof: If g € Grs then Grg = Gs SO Gy, ..., Gm are the
left cosets of G, in G. % ©

Theorem 3: If G is a transitive permutation group on n
symbols, and 0 is the permutation representation, then:

296 =[G|.
geG
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Proof: 296 = {(X, 9) | xg = X}
geG
n

= 2 |G
r=1
G

=n-; =IGl. O]

§8.2. Multiply Transitive Permutation
Groups

A permutation group G, on a set X, is T-transitive
if for all t-tuples (X, ... , x¢) and (y1, ..., i) € XT, with
the xi’s distinct and the yi’s distinct, there exists o € G
such that for each i, Xjo = Vi.

Examples 1: S, is n-transitive, An is (n — 2)-transitive.
S3 x Sz is not transitive.

NOTE: Apart from Sn and An there are only four 4-
transitive groups, called the Mathieu groups.

Theorem 4: If G is a 2-transitive permutation group and
0 is the corresponding character then:
2.(96)* = 2|G|.
geG
Proof: G is transitive on D = {(x, y) | x # y},
where (X, y)g is defined to be (xg, yg).

154



Now the number of elements of D fixed by g is:
(96))((g6) - 1).
So Y [(g6)? - (g0)] = |G| and so:
geG

2.(96)*= 2.(g6) +|G|=2[G|.
geG geG

Theorem 5:

Let G be a permutation group with character 6.

If G is transitive, y; occurs in 6 with multiplicity 1.

If G is doubly transitive, 6 = x1 + ; for some non-trivial
irreducible character y ;.

Proof: If G is transitive, (x1 | 0) = £(g0)/|G| = 1.

If G is doubly transitive, (0 | 0) = %(g0)%|G| = 2.

88.3. Frobenius Permutation Groups
Theorem 6: Suppose G is a transitive permutation group
on n symbols, and only the identity fixes more than one
symbol. Let H = G; and let y; be the trivial character of
G, 0 the permutation character of G and let y be any
irreducible character of H, of degree m. Then:

y* =y —m(6 - y1)
Is an irreducible character of G.
Proof: Let X = {g | g fixes exactly one symbol} and
Y ={g | g fixes no symbols}.
Then G = {1} + X + Y and each of X, Y is the disjoint
union of conjugacy classes.
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o [n]1]..J1]0]...T0
v [L]1] 1]1]. 1

Since (0 | x1) >0, a =0 — y1 IS a character:

1 X Y
0 n [1(.../1]{0...]0
Y1 1 (1(.../1]1|...]1
o |[n—=1/0]...]0(-1/...]-1

The elements of X consist of the non-trivial elements of

the Gy, forr=1,2, ..., n.

Hence |X| = n(h — 1) where h = |[H| = |G|/n and so
[Y[=n-1.

Since the G, are conjugate in G each conjugacy class

within X contains an element of H.

Let1#x e Hand lety € Cg(X).

Then 1yx = 1xy = 1y.

Since x fixes both 1 and 1y it must be that 1y =y and so:
y € H.

Hence Cg(X) = Cn(x) and so |x®| = n.|x"|.

If g'xg =y € H, 1gy = 1xg = 1g.

Clearly y # 1 and, since it fixes both 1 and 1g,

lg=1landsog e H.
It follows that x® n H = x".
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Hence the proportion of each conjugacy class within X
that lies in H is 1/n.

Let the conjugacy classes of H be I'y, ..., I'k with sizes
hy, ..., hk
Foreachr=1,2, ..., nchoose zr € Gyy.

Then the conjugacy classes of G that lie within X are of
the form:

n
Q= Dz Tjzrforj=2,....n,
r=1
where X here denotes a disjoint union.
Moreover Qj N H = Tj. So within X there are k — 1

conjugacy classes of sizes nh,, ... , nhy.

G 1 X Y
oafn-1| 0 |...] 0O [-1|...]-1
we|l mn [ y(@Q) ... |y@)| 0 0
vy m oy |- y@) [ m m
v m ly@) . y@) 0] ][0

At this stage y* is just a linear combination of irreducible
characters, with integer coefficients. It may not be a
character, let alone an irreducible one.

n
m? + Snhy (TR + (n - m?
* * J:2
(y,y) = nh
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n
m?n —mn + n 2 hjly ()
=1 _nh _
B nh “nh 1.

Thus y® — ma is an irreducible character or minus an
irreducible character.
But (¢ —ma)(1) =mn-m(n—1)=m> 050 y® - ma is
an irreducible character. % ©
Corollary: The set of permutations in G which fix no
symbols, together with the identity, is a normal subgroup
of G.
Proof: For all x € X m H there exists an irreducible
character y of H such that y(x) = degy.
Hence x lies outside of the kernel of the representation
corresponding to y© — (degy)a.
The intersection of these kernels must therefore be:

{1} +Y.

Example 2: G = A4, H = C3. X = (xxx), Y = (xx)(xx),
h=3.

I X Y

I (xxx) (xxx) (xx)(xx)
size 1 4 4 3
al|3| O 0 -1
yi®l4| 1 1 0
yi®-ma|l| 1 1 1
vw.ll4| o ®? 0
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vl-ma|l| o 0% 1

vl |l| o? o
yC-ma|l| o ) 1

e

88.4. Abstract Frobenius Groups

A group G is a Frobenius group if there exists a
proper non-trivial subgroup H of G such that Ng(H) = H
and Cg(h) < H for all non-trivial h € H.

Example 3: S3 is a Frobenius group with H being any of
the three subgroups of order 2.

Theorem 7: G is Frobenius if and only if there exists a
proper non-trivial subgroup H of G suchthat H N H? =1
forallg e G - H.

Proof: Suppose HNH%=1forallg ¢ Hand letg € Cg(h)
forl=h e H.

Thenhe HnH%andsog € H.

Suppose now G is Frobenius and let |G:H| = N.

Suppose 1 #h € H~ H? for some g ¢ H.

Let 1 = X1, g = X2, X3, ... , XN be a set of left coset
representatives of H in G. Then H, HY, HXs, ..., HXN are
the conjugates of H in G and, since Ng(H) = H, they are
distinct.

Clearly h® = hHXt  hH*t | O hHX,

Now |hH¥i| = |hH| for each i.

Since h e hHX1 ~ hHX2, |hC| < NL|hH].
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But Cg(h) = Cu(h) so |h€| = N.|hH|, a contradiction. %®

Theorem 8: Suppose G is a Frobenius group. Then G is
a transitive group of permutations on the left cosets of H
and only the identity fixes more than one coset.

Proof: (Ha)g = Hag so G permutes the right cosets.
Moreover it acts transitively.

If (Ha)g = Ha and (Hb)g = Hb for g = 1 then g € H2 N HP
= (H  Hba )2 50 Ha = Hb. %©

Theorem 9: A Frobenius group has a normal subgroup K
and a subgroup Hsuchthat G=KHandH K =1. (G is
called a split extension of K by H) % ©

The subgroup K is called the kernel of the
Frobenius group.

Theorem 10: If A is any abelian group of odd order and
G is A extended by a cyclic subgroup H = {g) of order 2
where g induces the automorphism a — a* on A, then G
is a Frobenius group with kernel A.

Proof: Clearly A is a normal subgroup of G.

A typical element of G has the form a or ag where a € A.
If a commutes with g then ag = ga = a"'g in which case
a’=1.

Since A has odd order we must have a = 1.

If ag commutes with g then (ag)g = g(ag) = a~*g? in which
case a? =1 and so again a = 1.

Hence H"H:=1landH~H¥=1foralla e A. %©
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Example 4: The dihedral group

Don = (A, B| A", B?, BA = AlB)
Is a Frobenius group, with kernel K = (A). Any of the
subgroups of order 2, for example (B), can play the role
of H in the definition.

Theorem 11: If G is Frobenius with kernel K and
complement Hand 1 # k € K then

Co(k) = Ck(Kk).
Proof: Let g € Cs(K). If Hag = Ha then aga™ € H.
But aka™ € Cg(aga™) whence g = 1.
If g fixes no coset then, by the Frobenius theorem, g € K.
%O

Theorem 12: Suppose G is Frobenius with kernel K and
complement H.
Then the class equations for H and K have the forms:
H =N=1+hy+...+hsand
IKI=M=1+k,*N+...+k=*N
and the class equation for G is:
IG|=1+kN+...+kN + Mhy+ ... + Mh;.
Proof: Let1#x e Kand 1=y € H.
Then |x6| = M|x¥| and |y©| = N.|y".
[XC| is a union of N conjugacy classes in K.
Every element g € G — K is conjugate to exactly one h e
H so |g® = M.|h¢|. %©

[Note that in the class equation given for G the terms are
in non-descending order.]
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Theorem 13 (THOMPSON): The kernel of a Frobenius
group is nilpotent.
Proof: We omit the proof of this very deep theorem. %

So far in all our examples of Frobenius groups the
kernel has been abelian. However it can be non-abelian.

Example 5: Let K be the group of all 3 x 3 uni-upper-

triangular matrices over Z;. That is, the elements of K
lab

have the form (0 1 ;:j This is a non-abelian group of
00

order 343 = 73,

Extend K by H = (g) of order 3 such that:

lab 12a4b
g401lc|g=|01 2c|.
00 00 1

The resulting group G is a Frobenius group of order 1029
= 3.7% with Frobenius kernel K of order 343. Although K
is not abelian, it is nilpotent, in accordance with
Thompson’s Theorem.

Theorem 14: Suppose the Frobenius group G has the
class equation:

IG|=1+a,+... ta,wherea;<az<...<a,.
Let N = a;, M = |G|/N and let a, be the last term divisible
by N.
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Then :
OM=1+a,+... +ay
(2) N = Ar+1 +M Ar+s + 1’
B N|M-1;
(4) N |aifi<r,;
B)M |aiifi>r,;
(6) if Niseven, aj=Nfori<r.
Proof: Since N doesn’t divide any Mh;, r =t and
_{ KiNifi<r
A= Mhigpifi>r
Parts (1) — (5) now follow.
(6) Let h € H have order 2. If k € K then:
kkk"k = k"k = h-1kk"h so
kh! e Co(kk™) < K or kk" = 1.
The first is a contradiction so k" = k-*for all k € K.
If a, b € K, (ab)" = a"b" whence (ab)* = ab and so ab
= ba. Hence K is abelian. % ©

Theorem 15 (FROBENIUS TEST): Let p be prime.
Suppose |G| = pN and G has p — 1 conjugacy classes of
size N. Then G is a Frobenius group with kernel G" of
order N.

Proof: Let h belong to a conjugacy classes of size N and
let H = Cg(h).

By the proof of the pN Test, each conjugacy class of size
N contains exactly one non-trivial element of H.
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Suppose 1 #h € H n xtHx.

Then H < Cg(h) and since they both have order r,
H = Cg(h).

If X ¢ H then h = xhx™! e H.

So the conjugacy class containing h contains two
elements of H, contradicting the pN Test.

Hence if x e G—H,H N xHx=1.

Thus G is a Frobenius group.

If the Frobenius kernel is K then |K| = N.

Now G/K = H and so is abelian. Thus G’ < K.

But, if x, y belong to the same conjugacy class of size N,
then xy e G’ and so |G’| > N. Hence the Frobenius kernel
isG'. %O
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